Dopaminergic Receptor Binding ($\left[{ }^{3} \mathrm{H}\right]$ Spiperone). The assay was carried out in the striatum of the calf brain according to the method described previously. ${ }^{23}$
Muscarinic Cholinergic Receptor Binding ($\left.{ }^{3} \mathrm{H}\right]$ QNB). This assay was also carried out on male Olac rat brain by the method previously described. ${ }^{4}$
Acknowledgment. We thank Dave Rackham, Sarah Morgan, Juliet Brown, and Julie Smith for the spectroscopic data and Nick Moore, Francesca Risius, Susan Wedley, Linda Horsman, and Jeremy Findlay for pharmacological assays. Elemental analyses were carried out at the Lilly Microanalytical Lab, Indianapolis, IN.
Registry No. 5, 83448-96-8; 6, 83448-87-7; 7, 83448-93-5; 8, 83448-94-6; 9, 83448-95-7; 10, 83448-90-2; 11, 121845-20-3; 12, 83448-97-9; 13, 83448-98-0; 14, 121845-21-4; 15, 121845-22-5; 16, 121845-23-6; 17, 121865-29-0; 18, 121845-24-7; 19, 121845-25-8; 20, 121845-26-9; 20-maleate, 121845-27-0; 21, 83449-02-9; 22,
(23) Howard, J. L.; Large, B. T.; Wedley, S.; Pullar, I. A. Life Sci. 1978, 23, 599.

83448-99-1; 23, 83448-88-8; 24, 83449-00-7; 25, 83449-01-8; 26, 83448-91-3; 27, 121845-28-1; 28, 83449-03-0; 29, 83449-04-1; 30, 121845-29-2; 31, 121845-30-5; 32, 83449-08-5; 33, 83449-05-2; 34, 83448-89-9; 35, 83449-06-3; 36, 83449-07-4; 37, 83448-92-4; 38, 121845-31-6; 39, 83449-09-6; 40, 83449-10-9; 41, 121845-32-7; 42, 121845-33-8; 43, 121845-34-9; 44, 121845-35-0; 45, 121845-36-1; 46, 121845-37-2; 47, 121845-38-3; 5-amino-4-cyano-2-methyl-2H-1,2,3-triazole, 28539-27-7; 5-amino-4-cyano-2-ethyl-2H-1,2,3triazole, 121845-39-4; o-fluoronitrobenzene, 1493-27-2; 2,5-dichloronitrobenzene, 89-61-2; 2,5-difluoronitrobenzene, 364-74-9; 2,5-dibromonitrobenzene, 3460-18-2; 2-fluoro-5-(trifluoromethyl)nitrobenzene, 367-86-2; 2,4,5-trifluoronitrobenzene, 89-69-0; 5-amino-4-carbethoxy-1-cyclohexyl-1 H -imidazole, 37842-61-8; 5-amino-4-cabethoxy-1-ethyl-1 H -imidazole, 121845-40-7; 5-amino-4-carbethoxy-1-methyl-1 H -imidazole, 54147-04-5; 4-amino-5-cyano-1-methyl-1 H -imidazole, 40637-80-7; 4-amino-5-cyano-1,2-dimethyl-1 H -imidazole, 58192-81-7; 5-amino-4-cyano-1-methyl-1H-1,2,3-triazole, 23085-12-3; 1-methylpiperazine, 109-01-3; ethyl 5 -[(2-amino-4-fluorophenyl)amino]-1-methyl-1 H -imidazole-4-carboxylate, 121845-41-8; $6 H-$-pyrido $[2,3-b][1,5]-$ benzodiazepin-5(11H)-one, 10189-78-3; 8,9-dichloro-6H-pyrido-[2,3-b][1,5]benzodiazepin-5 (11H)-one, 10321-11-6.

Long-Acting Dihydropyridine Calcium Antagonists. 3. Synthesis and Structure-Activity Relationships for a Series of 2-[(Heterocyclylmethoxy)methyl] Derivatives

\author{

Abstract

The preparation of 1,4-dihydropyridines containing (heterocyclylmethoxy)methyl groups in the 2 -position is described and the structural identification of certain of the compounds using ${ }^{1} \mathrm{H}$ NMR spectroscopic methods is reported. The calcium antagonist activity of the compounds on rat aorta is listed and is compared with the negative inotropic potency as determined by using a Langendorff-perfused guinea pig heart model. Several compounds are more potent than nifedipine and show greater selectivity for the vasculature over the heart. One compound, $2-[[(2-a \operatorname{mino}-4-$ hydroxypyrimidin-6-yl)methoxy]methyl]-4-(2,3-dichlorophenyl)-3-(ethoxycarbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydropyridine (27 , UK-56,593), was identified as a potent ($\mathrm{IC}_{50}=1.6 \times 10^{-9} \mathrm{M}$), tissue-selective calcium antagonist which proved to have a markedly longer duration of action ($>4.5 \mathrm{~h}$) than nifedipine in the anesthetized dog on intravenous administration.

}

We have recently reported ${ }^{1}$ the synthesis and structure activity relationships (SARs) of a series of novel 1,4 -dihydropyridine (DHP) calcium antagonists bearing basic side chains at the 2-position of the DHP ring. Our aim in this study was to modify the physicochemical properties of the DHP system so as to improve bioavailability and duration of action over the agents available at that time. Amlodipine (1) was identified as fulfilling our objectives

1,amlodipine
and is currently in late-stage clinical evaluation for the ance-daily treatment of angina and hypertension. ${ }^{2-4}$ In a subsequent publication, ${ }^{5}$ we reported that a basic center in the amlodipine series was not an absolute requirement for good calcium antagonist activity and that the amino group could be substituted by a number of five- or sixmembered heterocycles. The excellent calcium antagonist

[^0]potency and selectivity for the vasculature over cardiac tissue seen for these compounds was thought to arise from enhanced hydrogen-bonding interactions between the polar heterocycles and the DHP receptor. As a result of these studies, UK-52,831 (2) was selected for clinical develop-

ment. In order to extend these SARs and to identify additional structural features compatible with potent
(1) Arrowsmith, J. E.; Campbell, S. F.; Cross, P. E.; Stubbs, J. K.; Burges, R. A.; Gardiner, D. G.; Blackburn, K. J. J. Med. Chem. 1986, 29, 1696.
(2) Burges, R. A.; Gardiner, D. G.; Gwilt, M.; Higgins, A. J.; Blackburn, K. J.; Campbell, S. F.; Cross, P. E.; Stubbs, J. K. J. Cardiovasc. Pharmacol. 1987, 9, 110.
(3) Beresford, A. P.; Humphrey, M. J.; Stopher, D. A. Br. J. Pharmacol. 1985, 85, 333P.
(4) Faulkner, J. K.; McGibney, D.; Chasseud, L. F.; Perry, J. L.; Taylor, I. W. J. Clin. Pharmacol. 1986, 22, 1.
(5) Arrowsmith, J. E.; Campbell, S. F.; Cross, P. E.; Burges, R. A.; Gardiner, D. G. J. Med. Chem. 1989, 32, 562.

Table I. Data for Compounds Used in the Study

no.	route	mp, ${ }^{\circ} \mathrm{C}$	recrystn solvent ${ }^{a}$	formula	\% yield	Ca pIC ${ }_{50}{ }^{\text {b }}$	$\begin{gathered} \text { neg inotropy } \\ \text { pIC }_{25}{ }^{c} \\ \hline \end{gathered}$	selectivity index ${ }^{d}$
16	A	118-120	EtOAc	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}$	26	9.4	7.6^{e}	63
17	B	140-144	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$	48	9.0	7.4	40
18	C	194	EtOAc	$\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$	24	8.6	7.1	32
19	D	112-114	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5}$	81	6.5	NT	-
20	D	62-64	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{6} \mathrm{O}_{5}$	23	9.0	7.2	63
21	D	141-142	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5}$	23	8.5	7.2	20
22	E	225-230	EtOAc	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}$	52	8.6	6.9	50
23	E	190-193	$\mathrm{Et}_{2} \mathrm{O} / \mathrm{EtOAc}$	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}$	45	8.3	6.2	126
24	E	200-204	EtOAc	$\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}$	18	7.5	<6.0	>32
25	E	169-170	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$	51	8.7	7.1	40
26	E	130-135	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$	15	8.4	6.9	32
27	E	222-225	EtOAc/EtOH	$\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$	63	8.8	6.7	126
28	E	230-234 dec	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}$	48	8.7	<6.0	>50
29	E	219-222	EtOAc	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$	26	8.8	6.3	316
30	E	147-150	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$	34	8.1	6.9	16
31	F	175-177	EtOAc	$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{6}$	28	9.1	6.9	200
32	F	140-147	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{6}$	14	7.8	7.4	2.5
33	G	202-205	EtOAc	$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$	43	9.2	7.1	126
34	G	144-147	DIPE	$\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$	24	7.8	6.6	16
35	G	125-130	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}$	13	8.5	7.0	32
36	G	135-138	EtOAc	$\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{6}$	4	7.9	7.2	5
37	G	122-125	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{6}$	17	9.2	7.5	50
38	H	160-162	$\mathrm{Et}_{2} \mathrm{O}$	$\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}$	8	9.0	6.2	631
nifedipine						8.4 ± 0.01	7.5 ± 0.26	8

${ }^{a}$ DIPE, diisopropyl ether. ${ }^{6}$ Negative logarithm of the molar concentration required to block Ca^{2+}-induced contraction of K^{+}-depolarised rat aorta by 50%. Nifedipine was used as the standard compound. ${ }^{c}$ Negative logarithm of the molar concentration required to depress contraction in the Langendorff-perfused guinea pig heart by 25%. Nifedipine was used as the standard compound. ${ }^{d}$ Selectivity index $=\mathrm{Ca}$ $\mathrm{IC}_{50} /$ neg inotropy IC_{25}. ${ }^{\text {en }} n=2(\pm 0.3)$.
calcium antagonist activity, we have now prepared a series of 2-(heterocyclylmethoxy)methyl DHPs for evaluation as calcium antagonists.

Chemistry

The synthesis of the starting materials $8,9,11$, and 12 required for the preparation of compounds 16-38 (Table I) was achieved with the series of transformations indicated in Scheme I. Knoevenagel condensation of methyl 3aminocrotonate (3) with β-keto ester 4 followed by treatment with 2,3 -dichlorobenzaldehyde (5) and base-catalyzed hydrolysis afforded 6. Treatment of 6 with $1,1^{\prime}-$ carbonyldiimidazole (CDI) gave imidazolide 7, which was reacted in situ with acetylhydrazine, thiosemicarbazide, and ammonia to give 8,9, and 10, respectively. Compound 11 was obtained in good yield from 10 by dehydration with trifluoroacetic anhydride in pyridine. Reaction of 7 with Meldrum's acid/piperidine followed by heating in ethanol gave β-keto ester 12. ${ }^{6}$ An alternative route to 12 , which proved more amenable to large-scale preparation, involves the Hantzsch synthesis of 14 from β-keto ester 13,3 , and 5. Metalation of the terminal acetylene in 14 with n-butyllithium proceeded smoothly and quenching with carbon dioxide followed by esterification ${ }^{7}$ afforded 15. Mild, two-step hydration ${ }^{8}$ of 15 resulted in a good yield of 12.

The compounds 16-38 listed in Table I were obtained as described in Scheme II. Thus, dehydration of 8 with $\mathrm{P}_{2} \mathrm{O}_{5}$ yielded 16 (route A) while with Lawesson's reagent ${ }^{9}$ 17 was obtained (route B). Dehydration of 9 with POCl_{3} gave 2 -amino-1,3,4-thiadiazole 18 (route C). Unsubstituted tetrazole 19 was prepared by heating 11 with tri- n-butyltin azide followed by acid-catalyzed removal of the tri- n-bu-

[^1]tyltin group. Reaction of 19 with iodomethane in the presence of potassium carbonate gave a $1: 1$ mixture of the 1 -methyl (20) and 2-methyl (21) substituted products (route D); the formation of both N-methyl isomers (20 and 21) is in accord with literature precedent. ${ }^{10}$ The structures of 20 and 21 were assigned from their ${ }^{1} \mathrm{H}$ NMR spectra since it has been demonstrated ${ }^{11}$ for a series of N. methyltetrazoles that the chemical shift of the methyl protons occurs at significantly higher field ($0.09-0.34 \mathrm{ppm}$) in the 1 -isomer compared to the 2 -isomer. Thus, the chemical shift of the NMe group in 20 is 4.08 ppm while in 21 it is 4.39 ppm . The pyrimidin- 6 -yl derivatives (22-38) were prepared by routes $\mathrm{E}-\mathrm{H}$. Reaction of 12 with a suitable amidine or guanidine resulted in 22-30 (route E) while nucleophilic displacement of the methylthio group in 28 by 2-(aminomethyl)pyridine and 4-(aminomethyl)pyridine afforded 31 and 32, respectively (route F). Alkylation of 27 in N, N-dimethylformamide in the presence

27
of potassium carbonate furnished 3-alkylated products 33-37 (route G) while treatment with trimethyloxonium tetrafluoroborate afforded 38 (route H).

Alkylation of 27 can in principle occur at either ring nitrogen atom or the exocyclic oxygen or nitrogen atom. Since compounds 31 and 37 are not identical and reaction of 12 with (2-pyridylmethyl)guanidine affords a mixture containing 31 and 37 , it is apparent that alkylation must

[^2]Scheme ${ }^{a}{ }^{a}$

BOUTE B

BOUTE $ع$

(22) : $\mathrm{X}=\mathrm{CH}_{3}$	(23) : $\mathrm{X}=\mathrm{CH}_{2} \mathrm{OH}$	(24) : $\mathrm{X}=\mathbf{C}\left(\mathrm{CH}_{3}\right)_{3}$
(25) : $X=$	(26) : $\mathrm{X}=\mathrm{CH}_{2} \mathrm{~N}^{\square}$	(27) : $\mathrm{X}=\mathrm{NH}_{2}$
(28) : $\mathrm{X}=\mathrm{SM}$	(29) : $\mathrm{X}=\mathrm{NMe}_{2}$	(30) : $X=\sim \sim$

BOUTE. 6

BOUTE H

(38)
${ }^{2}$ Reagents : (a) $\mathrm{P}_{2} \mathrm{O}_{5}$; (b) Lawesson's reagent ; (c) POCl_{3}; (d) $\mathrm{Bu}_{3} \mathrm{SnN}_{3}$; (e) $\mathrm{HCl}_{\mathrm{g}} / \mathrm{Et}_{2} \mathrm{O}$; (f) $\mathrm{CH}_{3} / \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{CH}_{3} \mathrm{CN}$; (g) $\underset{\mathrm{HN}^{\mathrm{L}}}{\stackrel{\mathrm{X}}{\mathrm{N}} \mathrm{H}_{2}}$; (h) $\mathrm{R}^{1} \mathrm{R}^{2} \mathrm{NH}$; (i) R-Y $/ \mathrm{K}_{2} \mathrm{CO}_{3} / \mathrm{DMF}$; (0) $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}$
have occurred on one of the pyrimidine ring nitrogen atoms. This conclusion is in agreement with the reported regiochemistry of methylation of isocytosine ${ }^{12}$ and 6methylisocytosine. ${ }^{13}$ Although we were confident that

33-37 arose from alkylation of $\mathbf{2 7}$ on N3, NOE experiments on 33 and 37 confirmed our assignment. Thus, for both 33 and 37 significant NOE enhancements were seen between the 2 -amino group and the protons on the ring nitrogen substituent whereas no enhancements were seen between methylene (a) and the ring nitrogen substituent protons (see Table II).

Results and Discussion

In vitro calcium antagonist activity was assessed as the inhibition of calcium-induced contraction of potassiumdepolarized rat aorta. Negative inotropy was determined in vitro with a Langendorff-perfused guinea pig heart. The ratio of these two activities was used as an index of selectivity for vascular smooth muscle over cardiac muscle. From the data in Table I, it is apparent that in vitro calcium antagonist activity similar to that of nifedipine was achieved for many of these 2-(heterocyclylmethoxy)methyl DHP derivatives. For example, oxadiazole 16 is 10 -fold more potent than nifedipine and is 63 -fold selective for vascular tissue over the heart, while 1-methyltetrazole 20, which has a significant potency and selectivity advantage over its 2 -methyl isomer 21, is only slightly less active and of equivalent selectivity. Interestingly, unsubstituted tetrazole 19 is almost completely inactive, indicating that the presence of an acidic proton is not tolerated by the DHP receptor. Many of the pyrimidine derivatives (22-38) are also potent and selective calcium antagonists. Thus, 31,33 , and 37 are all at least 5 -fold more potent than nifedipine while $23,27,29,31$, and 38 exhibit tissue selectivities in favor of the vasculature in excess of 100 -fold. The 2 -substituent on the pyrimidine ring can be alkyl (22), amino (27) or 2-pyridyl (25) without markedly affecting the activity on the vasculature. In addition, replacement of both protons of the amino group in 27 by methyl substituents as in 29 does not lead to any substantial loss of activity. However, incorporation of bulky substituents in the 2-position of the pyrimidine ring does lead to less potent compounds (cf. 22 with 24 and 29 with 30). The reasons why 4 -pyridyl derivative 32 is relatively weak and nonselective are not clear, particularly since 2-pyridyl isomer 31 is one of the most potent and selective compounds. In certain cases the presence of a 3 -substituent in the pyrimidine ring is also compatible with good calcium antagonist activity although the introduction of bulk close to the pyrimidine ring as in 34 or the presence of a basic center in the 3 -substituent as in 36 both lead to decreased activity and selectivity. The excellent in vitro profile of 38 demonstrates that the potential for keto-enol tautomerism in the 4-hydroxypyrimidine ring is not a requirement for good calcium antagonist activity.

These results confirm that the presence of considerable bulk in the 2-position of the DHP is compatible with calcium antagonist activity. Both five- and six-membered ring 2-(heterocyclylmethoxy)methyl DHPs are potent calcium antagonists which have good vascular selectivity. That both five- and six-membered heterocyclic rings bearing a variety of functionality can be accommodated
(13) (i) Antonovich, E. G.; Prokof'ev, M. A. Vestn. Mosk. Univ., Ser. Fiz.-Mat. Estest. Nauk 1955, 57; Chem. Abstr. 1955, 49, 10972e. (ii) Reznik, V. S.; Pashkurov, N. G. Isv. Akad. Nauk SSSR, Ser. Khim. 1966, 1613; Chem. Abstr. 1967, 67, 43777j. (iii) Mandrichenko, B. E.; Mazur, I. A.; Kochergin, P. M. Khim. Geterotsikl. Soedin. 1974, 1140; Chem. Abstr. 1974, 81, $152152 m$. (iv) Biskupskaya, D. I.; Mikhailova, V. N.; Feld'man, I. K. Khim. Geterotsikl. Soedin. 1968, 579; Chem. Abstr. 1968, 69, $96629 k$. (v) Reznik, V. A.; Pashkurov, N. G.; Raevskii, O. A.; Shvetsov, Y. S. Isv. Akad. Nauk SSSR, Ser. Khim. 1969, 919; Chem. Abstr. 1969, 71, 30348g.

Scheme $\mathbf{I I}^{a}$

Table II. NOE Percentage Enhancements Observed for 33 and 37

compd	irradiated multiplet		NOE observations		
	proton assignment	chem shift, δ	proton assignment	chem shift, δ	\% change in signal
$33[\mathrm{R}=\mathrm{H}]$		3.44	NH_{2}	5.38	1.9
	$\mathrm{CH}_{2}(\mathrm{a})$	4.30	CH_{2} (b)	4.80	3.3
			H (c)	6.00	10.4
	CH_{2} (b)	4.80	CH_{2} (a)	4.30	4.7
			H (c)	6.00	3.1
	NH_{2}	5.38	NCH_{3} (d)	3.44	4.3
37	CH_{2} (a)	4.28	CH_{2} (b)	4.80	3.5
			H (c)	5.97	12.5
	CH_{2} (b)	4.80	CH_{2} (a)	4.28	4.4
			H (c)	5.97	4.2
		5.26	$\mathrm{H}(\mathrm{e})$	7.69	9.4
	NH_{2}	6.73	NCH_{2} (d)	5.26	1.8

into the DHP active site suggests that, although the receptor has strict structural requirements for the DHP ring, it will tolerate considerable bulk in the substituents on at least one side of the DHP ring. In addition, the good in vitro profile of oxadiazole 16 and tetrazoles 20 and 21 indicate that the presence of groups on the 2-position capable of being involved in hydrogen-bonding interactions with the DHP receptor is not an absolute requirement for potent, vascular selective calcium antagonist activity.

Compounds $17,18,20-22,25$, and 27 were selected for in vivo evaluation in instrumented, anesthetized dogs. The compounds were administered intravenously and their calcium antagonist potency and duration of action were determined from the effects on coronary blood flow.

Compounds 17,18 , and $20-22$ showed maximum or near-maximum falls in coronary vascular resistance (CVR) at $150 \mu \mathrm{~g} \mathrm{~kg}^{-1}$ while 27 was more potent and 25 was only slightly weaker (see Table III). However, only compound 27 had a markedly longer duration of action than nifedipine, showing a significant reduction of CVR even 4.5 h after dosing.
Compound 27 (UK-56,593) was evaluated further in the anesthetized dog. In Figure 1, the results of a cumulative dose study ($10-40 \mu \mathrm{~g} / \mathrm{kg}^{-1}$) are depicted. Compound 27 produced dose-related falls in both CVR and SVR (systemic vascular resistance) and an increase in $\mathrm{d} P / \mathrm{d} t_{\max }$. Notably, blood pressure was unaffected over the dose-range studied. The ED_{50} for coronary vasodilation determined

Table III. Coronary Vasodilator Activity in Anesthetized Dogs following a $150 \mu \mathrm{~g} \mathrm{~kg}^{-1}$ Intravenous Dose

compd	\% decrease in CVR	duration of action: ${ }^{a}$ half-life, min
17	85	30
18	61	45
20	61	15
21	78	20
22	79	65
25	38	10
27^{b}	82	>270
nifedipine	77	36

${ }^{a}$ Time taken for 50% recovery of CVR. ${ }^{b}$ Dose of $45 \mu \mathrm{~g} \mathrm{~kg}{ }^{-1}$.

Figure 1. Hemodynamic effects of 27 in anesthetized dogs (n = 4) (\pm SEM) .
from the data in Figure 1 is $35 \mu \mathrm{~g} \mathrm{~kg}^{-1}$; this may well underestimate the potency of 27 because of its markedly slow onset of action (approximately 2 h to peak effect; the onset of action was determined in a preliminary experiment by measuring the time course of the reduction in CVR caused by the administration of a single dose of 45 $\mu \mathrm{g} \mathrm{kg}^{-1}$ of 27 to an anesthetized dog) and the relatively short time courses between doses (30 min).

In conclusion, we have demonstrated that the 2-position of the DHP ring may be substituted by an alkoxyalkyl chain carrying a range of heterocycles to give potent, highly tissue-selective calcium antagonists. This work led to the identification of 27 , which is a more potent and vascular selective calcium antagonist than nifedipine in vitro and in vivo and which has a markedly longer duration of action in the anesthetized dog.

Experimental Section

Pharmacology. In vitro calcium antagonism IC_{50} and negative inotropy IC_{25} were measured as previously described. ${ }^{1}$

In vivo hemodynamic measurements were made in anesthetized beagle dogs implanted with catheters for the measurement of blood pressure and left ventricular pressure and for the intravenous administration of test compound. Coronary blood flow was measured with the hydrogen-clearance technique using platinum electrodes positioned in the coronary sinus and femoral artery as described in the literature. ${ }^{14}$ Cardiac output was de-
termined by the thermodilution method. All other parameters were derived from these measurements. Compound was administered in either ascending doses at fixed time intervals (for dose-response studies) or as one single dose to assess duration of action.

Chemistry. All melting points are uncorrected. The structures of all the compounds used in the study were determined by ${ }^{1} \mathrm{H}$ NMR and microanalysis. Microanalytical data was not obtained for intermediates 4, 8, 9, and 12-15. However, the ${ }^{1} \mathrm{H}$ NMR spectrum of each of these compounds was wholly compatible with its proposed structure and TLC data established the purity of each compound. ${ }^{1} \mathrm{H}$ NMR spectra were obtained with a Varian XL-100-5 spectrometer using CDCl_{3} as a solvent.

Ethyl 4-[(Methoxycarbonyl)methoxy]acetoacetate (4). 2 -[(Methoxycarbonyl)methoxy]acetyl chloride ${ }^{15}$ ($216.6 \mathrm{~g}, 1.31 \mathrm{~mol}$) was added over 45 min to a stirred solution of 2,2-dimethyl-1,3-dioxane-4,6-dione ($173.9 \mathrm{~g}, 1.21 \mathrm{~mol}$) and pyridine ($189.6 \mathrm{~g}, 2.4$ $\mathrm{mol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~L})$ while the temperature was kept below $5^{\circ} \mathrm{C}$. The mixture was stirred at $5^{\circ} \mathrm{C}$ for 1.5 h , washed with 2 M HCl and water, dried over MgSO_{4}, and evaporated. The resulting brown oil was dissolved in $\mathrm{EtOH}(300 \mathrm{~mL})$ and the solution was heated under reflux for 2.5 h and evaporated. The residual oil was distilled to give the title compound 4: yield $32.5 \mathrm{~g}(12 \%)$; bp $138-140^{\circ} \mathrm{C}\left(1\right.$ Torr); ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right) \delta=4.27(2 \mathrm{H}, \mathrm{s}), 4.20$ $(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}$), $4.16(2 \mathrm{H}, \mathrm{s}), 3.75(3 \mathrm{H}, \mathrm{s}), 3.54(2 \mathrm{H}, \mathrm{s}), 1.29$ ($3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz}$).

2-[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]acetic Acid (6). A solution of $3(52.9 \mathrm{~g}, 0.46 \mathrm{~mol}), 4(100 \mathrm{~g}, 0.46$ $\mathrm{mol})$, and $5(80.2 \mathrm{~g}, 0.46 \mathrm{~mol})$ in $\mathrm{MeOH}(300 \mathrm{~mL})$ was heated under reflux for 16 h and evaporated. The residue was treated with 10% aqueous NaOH solution (350 mL) and the mixture was heated under reflux for 1.5 h , washed three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, acidified with concentrated HCl , and extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were washed with water, dried over MgSO_{4}, and evaporated. Recrystallization of the residue from EtOAc gave title compound 6: yield $23.1 \mathrm{~g}(11 \%) ; \mathrm{mp} 160-162^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{20^{-}}$ $\left.\mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{NO}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

1-Acetyl-2-[[[4-(2,3-dichlorophenyl)-3-(ethoxy-carbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydro-pyridin-2-yl]methoxy]acetyl]hydrazine (8). Carbonyldiimidazole ($1.15 \mathrm{~g}, 7.1 \mathrm{mmol}$) was added to a solution of $6(3.00$ $\mathrm{g}, 6.55 \mathrm{mmol}$) in THF (80 mL) and the mixture stirred for 2 h , treated with acetylhydrazine ($2.00 \mathrm{~g}, 27 \mathrm{mmol}$), stirred for 5 h , and evaporated. The residue was partitioned between EtOAc and water and the organic layer was washed with water, dried over MgSO_{4}, and evaporated to give title compound $8: 3.1 \mathrm{~g}(92 \%)$; oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=6.90-7.40(4 \mathrm{H}, \mathrm{m}), 5.46(1 \mathrm{H}, \mathrm{s}), 4.80$ $(2 \mathrm{H}, \mathrm{s}), 4.23(2 \mathrm{H}, \mathrm{s}), 4.06(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 3.62(3 \mathrm{H}, \mathrm{s}), 2.36$ $(3 \mathrm{H}, \mathrm{s}), 2.09(3 \mathrm{H}, \mathrm{s}), 1.24(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$.

1-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]acetyl]thiosemicarbazide (9). Stirring a solution of 6 (3.20 g , 7.0 mmol) and carbonyldiimidazole ($1.25 \mathrm{~g}, 7.7 \mathrm{mmol}$) in THF $(100 \mathrm{~mL})$ for 2 h and then adding thiosemicarbazide $(1.80 \mathrm{~g}, 20$ mmol) gave title compound 9 by a method identical with that described for the previous example: yield $3.10 \mathrm{~g}(83 \%)$; mp $95-100$ ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=7.5-8.5\left(4 \mathrm{H}\right.$, exchangeable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, $6.90-7.45(4 \mathrm{H}, \mathrm{s}), 5.44(1 \mathrm{H}, \mathrm{s}), 4.83(2 \mathrm{H}, \mathrm{s}), 4.33(2 \mathrm{H}, \mathrm{s}), 4.15$ $(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 3.60(3 \mathrm{H}, \mathrm{s}), 2.33(3 \mathrm{H}, \mathrm{s}), 1.22(3 \mathrm{H}, \mathrm{t}, J=$ 7 Hz).

2-[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]acetamide (10). Carbonyldiimidazole ($3.6 \mathrm{~g}, 22 \mathrm{mmol}$) was added to a solution of $6(9.2 \mathrm{~g}, 20 \mathrm{mmol})$ in THF $(200 \mathrm{~mL})$ and the mixture was stirred for 2 h . Gaseous ammonia was bubbled rapidly through the solution for 30 min and the mixture was evaporated. Workup as described above for compound 8 afforded an oil which was crystallized from $\mathrm{Et}_{2} \mathrm{O} /$ hexane to give title compound 10: yield $8.0 \mathrm{~g}(87 \%)$; $\mathrm{mp} 55-60^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{20^{-}}$ $\mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{6}$) C, H, N.
(14) Auckland, K.; Bower, B. F.; Berliner, R. W. Circulation 1964, 14, 164.
(15) Terasawa, T.; Okada, T. J. Org. Chem. 1977, 42, 1163.

2-[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]acetonitrile (11). A solution of trifluoroacetic anhydride (4.20 $\mathrm{g}, 21 \mathrm{mmol}$) in dioxane (20 mL) was added over 10 min to a stirred solution of $10(6.8 \mathrm{~g}, 15 \mathrm{mmol})$ and pyridine ($3.6 \mathrm{~g}, 46 \mathrm{mmol}$) in dioxane (160 mL). The mixture was stirred for 16 h , diluted with water, and extracted into EtOAc. The organic extract was washed successively with $1 \mathrm{M} \mathrm{HCl}, 10 \%$ aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution and water, dried over MgSO_{4}, and evaporated. The residue was chromatographed on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ plus $0-50 \% \mathrm{EtOAc}$ as eluant. Appropriate fractions were combined and evaporated, and the resulting oil was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give title compound 11: yield $4.75 \mathrm{~g}(72 \%) ; \mathrm{mp} 117-118{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

Ethyl 4-[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]acetoacetate (12). Method A from Acid 6. Carbonyldiimidazole ($5.20 \mathrm{~g}, 32 \mathrm{mmol}$) was added to a solution of $6(14.00$ $\mathrm{g}, 30.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$, and the mixture was stirred for 2 h and then added to a solution of 2,2-dimethyl-1,3-diox-ane-4,6-dione ($4.56 \mathrm{~g}, 32 \mathrm{mmol}$) and pyridine ($2.40 \mathrm{~g}, 30 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The mixture was stirred for 2.5 h , washed successively with water, 2.5 M HCl , and saturated brine, dried over MgSO_{4}, and evaporated. The residual oil was dissolved in $\mathrm{EtOH}(200 \mathrm{~mL})$ and the solution was heated under reflux for 2.75 h and evaporated. The residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give the title compound 2: yield $9.0 \mathrm{~g}(60 \%)$; mp $99-102^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=7.55-7.70(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 6.9-7.4(3 \mathrm{H}, \mathrm{m}), 5.48(1 \mathrm{H}, \mathrm{s})$, $4.82(2 \mathrm{H}, \mathrm{s}), 4.41(2 \mathrm{H}, \mathrm{s}), 4.29(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 4.10(2 \mathrm{H}, \mathrm{q}$, $J=7 \mathrm{~Hz}), 3.66(3 \mathrm{H}, \mathrm{s}), 3.55(2 \mathrm{H}, \mathrm{s}), 2.47(3 \mathrm{H}, \mathrm{s}), 1.34(3 \mathrm{H}, \mathrm{t}$, $J=7 \mathrm{~Hz}), 1.20(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$.

Method B from Acetylenic Ester 15. Diethylamine (477 g , $6.52 \mathrm{~mol})$ was added to a solution of $15(2.22 \mathrm{~kg}, 4.34 \mathrm{~mol})$ in THF (11.1 L) and the mixture was stirred for 1.5 h and evaporated. The residue was triturated with methanol to give a solid which was stirred in a mixture of acetic acid (7.5 L) and water (3.75 L) for 6 h , diluted with water, and extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extract was washed successively with water, saturated aqueous NaHCO 3 solution, and water, dried over MgSO_{4}, and evaporated. The residual solid was recrystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give title compound 15, whose spectral data was identical with those of the material obtained above.
Ethyl 4-(Prop-2-ynyloxy)acetoacetate (13). A solution of ethyl 4 -chloroacetoacetate ($294 \mathrm{~g}, 1.79 \mathrm{~mol}$) in THF (200 mL) was added over 3 h to a stirred, ice-cooled suspension of NaH (150 $\mathrm{g}, 5.0 \mathrm{~mol} ; 80 \%$ dispersion in oil) in THF (500 mL) and the mixture was treated over 2 h with ice-cooling with a solution of prop-2-ynol ($100 \mathrm{~g}, 1.79 \mathrm{~mol}$) in THF (200 mL). The mixture was stirred for 16 h and poured into $2 \mathrm{M} \mathrm{HCl}(900 \mathrm{~mL})$, and the layers were separated. The organic layer was evaporated and the resulting red oil was separated from the mineral oil. This red oil was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was washed with water, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and evaporated to give title compound 13: yield $313 \mathrm{~g}(95 \%)$; oil; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=4.1-4.4(6 \mathrm{H}, \mathrm{m}), 3.56$ $(2 \mathrm{H}, \mathrm{s}), 2.48(1 \mathrm{H}, \mathrm{t}, J=2.5 \mathrm{~Hz}), 1.27(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$.

1-[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-2-propyne (14). Piperidine ($2.4 \mathrm{~g}, 28 \mathrm{mmol}$) was added dropwise over 10 min to a mixture of $5(60 \mathrm{~g}, 0.34 \mathrm{~mol})$ and $13(63 \mathrm{~g}, 0.34$ $\mathrm{mol})$ in 2-propanol $(600 \mathrm{~mL})$. The mixture was stirred for 24 h , treated with $3(39 \mathrm{~g}, 0.34 \mathrm{~mol})$, stirred for 4 days, and evaporated. The residue was crystallized from MeOH to give title compound 14: yield $29.5 \mathrm{~g}(21 \%)$; mp $104-105^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=$ $7.35(1 \mathrm{H}, \mathrm{dd}, J=8$ and 2 Hz$), 7.28(1 \mathrm{H}, \mathrm{dd}, J=8$ and 2 Hz), $7.09(1 \mathrm{H}, \mathrm{t}, 3=8 \mathrm{~Hz}), 7.02(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.52(1 \mathrm{H}, \mathrm{s}), 4.81(2 \mathrm{H}$, AB system), $4.33(2 \mathrm{H}, \mathrm{d}, J=2 \mathrm{~Hz}), 4.04(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 3.60$ $(3 \mathrm{H}, \mathrm{s}), 2.57(1 \mathrm{H}, \mathrm{t}, J=2 \mathrm{~Hz}), 2.38(3 \mathrm{H}, \mathrm{s}), 1.21(3 \mathrm{H}, \mathrm{t}, J=$ 8 Hz).

Ethyl 4-[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(methoxycarbony1)-6-methyl-1,4-dihydropyridin-2-yl]meth-oxy]-2-butynoate (15). A 1.6 M solution of $n-\mathrm{BuLi}(360 \mathrm{~g}, 5.62$ mol) in hexane was added over 40 min to a stirred, cooled (-65 ${ }^{\circ} \mathrm{C}$) solution of $14(1.10 \mathrm{~kg}, 2.51 \mathrm{~mol})$ in THF (11 L) and the mixture was stirred at $-65^{\circ} \mathrm{C}$ for 2.5 h . Carbon dioxide was bubbled through the mixture for 2 h while it was allowed to warm to $0^{\circ} \mathrm{C}$. The layers were separated, and the aqueous layer was
washed with $\mathrm{Et}_{2} \mathrm{O}$, acidified with concentrated HCl , and extracted into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic extracts were dried over MgSO_{4} and evaporated. The resulting solid was dissolved in DMSO $(800 \mathrm{~mL})$ and the solution was treated with a solution of Triton B (304 g , $1.82 \mathrm{~mol})$ in DMSO $(900 \mathrm{~mL})$. After $10 \mathrm{~min} \operatorname{EtBr}(218 \mathrm{~g}, 2.0 \mathrm{~mol})$ was added and the mixture was stirred for 48 h , diluted with water, and extracted into EtOAc. The organic extracts were washed with saturated brine, dried over MgSO_{4}, and evaporated. The residual solid was recrystallized from MeOH to give title compound 15: yield $780 \mathrm{~g}(82 \%) ; \mathrm{mp} 123-125^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \delta=7.14-7.38$ $(2 \mathrm{H}, \mathrm{m}), 7.09(1 \mathrm{H}, \mathrm{t}, J=8 \mathrm{~Hz}), 6.92(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 5.51(1 \mathrm{H}, \mathrm{s})$, 4.70-4.97 ($4 \mathrm{H}, \mathrm{m}), 4.43(2 \mathrm{H}, \mathrm{s}), 4.25(2 \mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 4.06(2$ $\mathrm{H}, \mathrm{q}, J=7 \mathrm{~Hz}), 3.62(3 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{s}), 1.30(3 \mathrm{H}, \mathrm{t}, J=7$ $\mathrm{Hz}), 1.18(3 \mathrm{H}, \mathrm{t}, J=7 \mathrm{~Hz})$.

2-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-5-methyl-1,3,4-oxadiazole (16). A mixture of 8 (1.33 $\mathrm{g}, 2.58 \mathrm{mmol})$ and $\mathrm{P}_{2} \mathrm{O}_{5}(1.55 \mathrm{~g}, 10.9 \mathrm{mmol})$ in $\mathrm{CHCl}_{3}(70 \mathrm{~mL})$ was stirred for 72 h , washed with water, dried over MgSO_{4}, and evaporated. The residual oil was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ and recrystallized from EtOAc to give the title compound 16: yield $0.33 \mathrm{~g}(26 \%)$; mp $118-120^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-5-methyl-1,3,4-thiadiazole (17). A mixture of 8 (1.50 $\mathrm{g}, 2.91 \mathrm{mmol}$) and Lawesson's reagent ($1.18 \mathrm{~g}, 2.91 \mathrm{mmol}$) in $\mathrm{CH}_{3} \mathrm{CN}(50 \mathrm{~mL})$ was stirred for 24 h and evaporated. The residue was chromatographed on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ plus $0-1 \% \mathrm{MeOH}$ as eluant. Appropriate fractions were combined and evaporated, and the residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give title compound 17: yield $0.82 \mathrm{~g}(48 \%)$; $\mathrm{mp} 140-144{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}\right)$ C, H, N.

5-Amino-2-[[[4-(2,3-dichlorophenyl)-3-(ethoxy-carbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydro-pyridin-2-yl]methoxy]methyl]-1,3,4-thiadiazole (18). A solution of $9(1.00 \mathrm{~g}, 1.88 \mathrm{mmol})$ in $\mathrm{POCl}_{3}(50 \mathrm{~mL})$ was stirred for 7 h and evaporated. The residue was partitioned between water and CHCl_{3} and the organic layer was washed with water, dried over MgSO_{4}, and evaporated. The residue was chromatographed on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ plus $0-5 \% \mathrm{MeOH}$ as eluant. Appropriate factions were combined and evaporated, and the residue was crystallized from EtOAc to give the title compound 18: yield 0.23 $\mathrm{g}(24 \%)$; mp $194^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]methyl]tetrazole (19). A solution of 11 ($3.52 \mathrm{~g}, 8.0 \mathrm{mmol}$) and tri- n-butyltin azide ($3.00 \mathrm{~g}, 9.0 \mathrm{mmol}$) in dioxane (100 mL) was heated under reflux for 21.5 h and evaporated. The residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(200 \mathrm{~mL})$ and gaseous HCl was passed through the solution for 50 min . The resulting precipitate was collected, washed with $\mathrm{Et}_{2} \mathrm{O}$, and dried to give title compound 19: yield $3.14 \mathrm{~g}(81 \%) ; \mathrm{mp} 112-114^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

5-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-1-methyltetrazole (20) and 5-[[[4-(2,3-Dichloro-phenyl)-3-(ethoxycarbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]methyl]-2methyltetrazole (21). A mixture of $19(0.96 \mathrm{~g}, 2.0 \mathrm{mmol}), \mathrm{CH}_{3} \mathrm{I}$ ($0.72 \mathrm{~g}, 5.0 \mathrm{mmol}$), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.69 \mathrm{~g}, 5.0 \mathrm{mmol})$ in $\mathrm{CH}_{3} \mathrm{CN}(40$ mL) was heated under reflux for 8 h , filtered, and evaporated. The residue was chromatographed on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ plus $0-50 \%$ EtOAc as eluant. In each case, appropriate fractions were combined and evaporated, and the residues were crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give title compounds 20 and 21. 20: yield $228 \mathrm{mg}(23 \%)$; mp 62-64 ${ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$ (more polar isomer). 21: yield $229 \mathrm{mg}(23 \%)$; mp 141-142 ${ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{5}\right.$) $\mathrm{C}, \mathrm{H}, \mathrm{N}$ (less polar isomer).

General Route to 2-Substituted Pyrimidines (22-30). A solution of 12 , the appropriate amidine or guanidine derivative, and DBN in ethanol was stirred at room temperature or heated under reflux and then evaporated. The residue was dissolved in CHCl_{3} and the solution was washed successively with 0.1 M HCl , water, and saturated aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, dried over MgSO_{4}, and evaporated.

6-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-
methyl]-4-hydroxy-2-methylpyrimidine Hydrate (22). A solution of 12 ($0.53 \mathrm{~g}, 1.0 \mathrm{mmol}$), acetamidine hydrochloride (0.10 $\mathrm{g}, 1.06 \mathrm{mmol}$), and DBN ($0.25 \mathrm{~g}, 2.0 \mathrm{mmol}$) in EtOH (5 mL) was stirred for 18.5 h . Crystallization of the residue from EtOAc gave title compound 22: $0.27 \mathrm{~g}(52 \%)$; mp $225-230^{\circ} \mathrm{C}$. Anal. ($\mathrm{C}_{24}-$ $\left.\mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
6-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-4-hydroxy-2-(hydroxymethyl)pyrimidine (23). A solution of $12(0.53 \mathrm{~g}, 1.0 \mathrm{mmol})$, 2-hydroxyacetamidine hydrochloride ${ }^{16}(0.13 \mathrm{~g}, 1.0 \mathrm{mmol})$, and DBN $(0.14 \mathrm{~g}, 1.1 \mathrm{mmol})$ in EtOH $(20 \mathrm{~mL}$) was stirred for 72 h . Crystallization of the residue from $\mathrm{EtOAc} / \mathrm{Et}_{2} \mathrm{O}$ gave title compound 23: yield $0.24 \mathrm{~g}(45 \%) ; \mathrm{mp}$ 190-193 ${ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-tert-Butyl-6-[[[4-(2,3-dichlorophenyl)-3-(ethoxy-carbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydro-pyridin-2-yl]methoxy]methyl]-4-hydroxypyrimidine (24). A solution of $12(0.53 \mathrm{~g}, 1.0 \mathrm{mmol}), 2,2$-dimethylpropanamidine hydrochloride ($0.14 \mathrm{~g}, 1.0 \mathrm{mmol}$), and DBN ($0.14 \mathrm{~g}, 1.1 \mathrm{mmol}$) in $\mathrm{EtOH}(20 \mathrm{~mL})$ was stirred for 48 h . Crystallization of the residue from EtOAc gave title compound 24: yield $0.10 \mathrm{~g}(18 \%)$; mp $200-204{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-4-hydroxy-2-(2-pyridyl)pyrimidine (25). A solution of $12(0.53 \mathrm{~g}, 1.0 \mathrm{mmol})$, pyridine-2-carboxamidine hydrochloride ${ }^{17}$ ($0.16 \mathrm{~g}, 1.0 \mathrm{mmol}$), and DBN (2.0 mmol) in EtOH (5 mL) was stirred for 24 h . Crystallization of the residue from $\mathrm{Et}_{2} \mathrm{O}$ gave title compound 25 : yield $0.30 \mathrm{~g}(51 \%) ; \mathrm{mp} 169-170^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
6-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-4-hydroxy-2-(morpholinomethyl) pyrimidine (26). A solution of $12(1.58 \mathrm{~g}, 3.0 \mathrm{mmol}), 2$-morpholinoacetamidine hydrochloride (prepared as follows: a solution of 2 -chloroacetamidine hydrochloride ($0.5 \mathrm{~g}, 3.35 \mathrm{mmol}$) in morpholine (10 mL) was stirred for 18 h , filtered, and evaporated to give essentially pure product containing traces of morpholine by TLC and ${ }^{1} \mathrm{H}$ NMR) ($1.00 \mathrm{~g}, 5.6 \mathrm{mmol})$, and DBN ($1.10 \mathrm{~g}, 8.9 \mathrm{mmol}$) in EtOH $(40 \mathrm{~mL}$) was stirred for 72 h . Crystallization of the residue from $\mathrm{Et}_{2} \mathrm{O}$ gave title compound 26: yield $0.25 \mathrm{~g}(15 \%)$; mp 130-135 ${ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
2-Amino-6-[[[4-(2,3-dichlorophenyl)-3-(ethoxy-carbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydro-pyridin-2-yl]methoxy]methyl]-4-hydroxypyrimidine (27). A solution of 12 ($0.74 \mathrm{~g}, 1.4 \mathrm{mmol}$), guanidine hydrochloride (0.14 $\mathrm{g}, 1.5 \mathrm{mmol})$, and DBN ($0.25 \mathrm{~g}, 2.0 \mathrm{mmol}$) in EtOH (30 mL) was heated under reflux for 5.5 h . Crystallization of the residue from $\mathrm{EtOAc} / \mathrm{EtOH}$ gave the title compound 27 : yield $0.46 \mathrm{~g}(63 \%)$; mp $222-225^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{23} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-4-hydroxy-2-(methylthio)pyrimidine (28). A solution of $12(1.00 \mathrm{~g}, 1.89 \mathrm{mmol})$, 2-methylisothiouronium sulfate (0.53 $\mathrm{g}, 1.90 \mathrm{mmol})$, and DBN $(0.35 \mathrm{~g}, 2.82 \mathrm{mmol})$ in EtOH (30 mL) was stirred for 5 days. Crystallization of the residue from $\mathrm{Et}_{2} \mathrm{O}$ gave title compound 28: yield $0.50 \mathrm{~g}(48 \%) ; \mathrm{mp} 230-234^{\circ} \mathrm{C}$ dec. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-2-(dimethylamino)-4-hydroxypyrimidine (29). A solution of $12(0.82 \mathrm{~g}, 1.55 \mathrm{mmol}), N, N$-dimethylguanidine hydrochloride ($0.20 \mathrm{~g}, 1.62 \mathrm{mmol}$), and DBN ($0.30 \mathrm{~g}, 2.4 \mathrm{mmol}$) in EtOH (40 mL) was stirred for 72 h . Crystallization of the residue from EtOAc gave title compound 29: yield $0.22 \mathrm{~g}(26 \%) ; \mathrm{mp}$ $219-222^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

6-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-4-hydroxy-2-piperidinopyrimidine (30). A solution of $12(0.80 \mathrm{~g}, 1.5 \mathrm{mmol})$, piperidinoformamidine hydriodide (0.39 $\mathrm{g}, 1.5 \mathrm{mmol})$, and DBN ($0.25 \mathrm{~g}, 2.0 \mathrm{mmol}$) in EtOH (20 mL) was

[^3]stirred for 24 h . Crystallization of the residue from $\mathrm{Et}_{2} \mathrm{O}$ gave title compound 30 : yield $0.30 \mathrm{~g}(34 \%)$; $\mathrm{mp} 147-150^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

A solution of $12(0.53 \mathrm{~g}, 1.0 \mathrm{mmol})$, (2-pyridylmethyl) guanidinium sulfate ${ }^{18}(0.25 \mathrm{~g}, 1.26 \mathrm{mmol})$, and DBN $(0.20 \mathrm{~g}, 1.61$ mmol) in EtOH (20 mL) was stirred for 72 h . TLC and ${ }^{1} \mathrm{H}$ NMR analysis of the crude product showed it to be an approximately equimolar mixture of 31 and 37 .

6-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-4-hydroxy-2-(2-pyridylmethyl)pyrimidine (31). A mixture of $28(0.50 \mathrm{~g}, 0.92 \mathrm{mmol})$ and 2 -(aminomethyl)pyridine $(2.0 \mathrm{~g})$ was heated at $75^{\circ} \mathrm{C}$ for 7 h , dissolved in EtOAc, washed with water, dried over MgSO_{4}, and evaporated. the residue was chromatographed on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ plus $0-1 \% \mathrm{MeOH}$ as eluant. Appropriate fractions were combined and evaporated, and the residual solid was recrystallized from EtOAc to give title compound 31: yield $0.17 \mathrm{~g}(28 \%)$; mp $175-177^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
6-[[[4-(2,3-Dichlorophenyl)-3-(ethoxycarbonyl)-5-(meth-oxycarbonyl)-6-methyl-1,4-dihydropyridin-2-yl]methoxy]-methyl]-4-hydroxy-2-(4-pyridylmethyl)pyrimidine Hemihydrate (32). A mixture of $28(0.50 \mathrm{~g}, 0.92 \mathrm{mmol})$ and 4 -(aminomethyl) pyridine (5.0 mL) was heated at $95^{\circ} \mathrm{C}$ for 60 h , dissolved in CHCl_{3}, washed successively with 2 M HCl and 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, dried over MgSO_{4}, and evaporated. The residue was chromatographed on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ plus $0-4 \% \mathrm{MeOH}$ as eluant. Appropriate fractions were combined and evaporated, and the residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give title compound 32: yield $80 \mathrm{mg}(14 \%)$; mp $140-147^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{5}-\right.$ $\left.\mathrm{O}_{6} \cdot 0.5 \mathrm{H}_{2} \mathrm{O}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
General Route to 3-Substituted Pyrimidines 33-37. A mixture of $27(0.52 \mathrm{~g}, 1.0 \mathrm{mmol})$, the appropriate alkylating agent (1.0 mmol), and $\mathrm{K}_{2} \mathrm{CO}_{3}(0.14 \mathrm{~g}, 1.0 \mathrm{mmol})$ in DMF $(20 \mathrm{~mL})$ was stirred for 4 days (in the synthesis of 34 the mixture was heated at $80^{\circ} \mathrm{C}$ for 18 h) and evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and the solution was washed with water, dried over MgSO_{4}, and evaporated. The residue was chromatographed on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ plus $0-5 \% \mathrm{MeOH}$ as eluant. Appropriate fractions were combined and evaporated, and the residue was crystallized from the appropriate solvent.
2-Amino-6-[[[4-(2,3-dichlorophenyl)-3-(ethoxy-carbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydro-pyridin-2-yl]methoxy]methyl]-4-hydroxy-3-methylpyrimidine (33). Compound 27 was reacted with $\mathrm{CH}_{3} \mathrm{I}$ and the residue was crystallized from EtOAc to give title compound 33: yield $0.23 \mathrm{~g}(43 \%)$; mp $202-205{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}\right) \mathrm{C}$, H, N.
2-Amino-6-[[[4-(2,3-dichlorophenyl)-3-(ethoxy-carbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydro-pyridin-2-yl]methoxy]methyl]-4-hydroxy-3-(2-propyl)pyrimidine (34). Compound 27 was reacted with 2 -bromopropane and the residue was crystallized from DIPE to give title compound 34: yield $135 \mathrm{mg}(24 \%)$; mp $144-147^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}\right)$ C, H, N.
2-Amino-6-[[[4-(2,3-dichlorophenyl)-3-(ethoxy-carbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydro-pyridin-2-yl]methoxy]methyl]-4-hydroxy-3-(2-hydroxyethyl)pyrimidine (35). Compound 27 was reacted with 2 bromoethanol and the residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give title compound 35 : yield $74 \mathrm{mg}(13 \%)$; mp $125-130^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{7}\right) \mathrm{H}, \mathrm{N}$; C: calcd, 52.92 ; found, 52.33 .
2-Amino-6-[[[4-(2,3-dichlorophenyl)-3-(ethoxy-carbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydro-pyridin-2-yl]methoxy]methyl]-3-[2-(dimethylamino)-ethyl]-4-hydroxypyrimidine Hydrate (36). Compound 27 was reacted with (2-bromoethyl)dimethylamine and the residue was crystallized from EtOAc to give title compound 36: yield 25 mg (4%) ; mp 135-138 ${ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{6} \cdot \mathrm{H}_{2} \mathrm{O}\right) \mathrm{H}, \mathrm{N} ; \mathrm{C}$: calcd, 52.94; found, 53.53 .

2-Amino-6-[[[4-(2,3-dichlorophenyl)-3-(ethoxy-carbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydro-
(18) Yoshinura, Y.; Uno, J. Japanese Patent 70, 05, 776, 1970; Chem. Abstr. 1970, 72, 132533x.
pyridin-2-yl]methoxy]methyl]-4-hydroxy-3-(2-pyridylmethyl)pyrimidine (37). Compound 27 was reacted with 2 (chloromethyl)pyridine and the residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give title compound 37: yield $102 \mathrm{mg}(17 \%)$; mp 122-125 ${ }^{\circ} \mathrm{C}$ Anal. $\left(\mathrm{C}_{29} \mathrm{H}_{29} \mathrm{Cl}_{2} \mathrm{~N}_{5} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.

2-Amino-6-[[[4-(2,3-dichlorophenyl)-3-(ethoxy carbonyl)-5-(methoxycarbonyl)-6-methyl-1,4-dihydro-pyridin-2-yl]methoxy]methyl]-4-methoxypyrimidine (38) Trimethyloxonium tetrafluoroborate ($0.85 \mathrm{~g}, 5.7 \mathrm{mmol}$) was added to a stirred suspension of $27(1.00 \mathrm{~g}, 1.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 24 h , washed with 5% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution, dried over
MgSO_{4}, and evaporated. The residue was chromatographed on silica using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ plus $0-1 \% \mathrm{MeOH}$ as eluant. Appropriate fractions were combined and evaporated, and the residue was crystallized from $\mathrm{Et}_{2} \mathrm{O}$ to give title compound 38: yield 80 mg (8%); mp $160-162{ }^{\circ} \mathrm{C}$. Anal. $\left(\mathrm{C}_{24} \mathrm{H}_{26} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{6}\right) \mathrm{C}, \mathrm{H}, \mathrm{N}$.
Acknowledgment. We thank S. M. Denton and S. F. Tickner for their able technical assistance, A. J. Pettman and I. W. Sinclair for the large-scale synthesis of 12, and A. G. Swanson for performing the NOE experiments on 33 and 37. We are also grateful to P. J. Wadsworth and his staff for analytical and spectral data.

Substituted 5-Amino-4,5,6,7-Tetrahydroindazoles as Partial Ergoline Structures with Dopaminergic Activity

\author{

Abstract

Two series of tetrahydroindazoles were synthesized and evaluated for dopaminergic activity. A number of these partial ergoline analogues possess substituents that could mimic the C-8 substituent of the dopaminergic ergolines. Of the unsymmetrically substituted amine series $7 \mathrm{a}-\mathrm{k}$, the (monopropylamino)tetrahydroindazole 7 b was most interesting as it was found to selectively activate the dopamine (DA) autoreceptor at a dose of $5 \mathrm{mg} / \mathrm{kg}$ in rats. The disubstituted amines $7 \mathbf{g}-\mathbf{k}$ had significant DA postsynaptic activity as measured by increases of serum corticosterone levels in rats. The 6 -substituted- 5 -aminotetrahydroindazoles $10 \mathrm{a}-\mathrm{d}$ were found to possess only marginal dopaminergic activity

}

Classical neuroleptics are believed to exert their therapeutic effect by blocking the postsynaptic dopamine (DA) receptor. ${ }^{1}$ This same pharmacological property is thought to be responsible for the development of undesirable extrapyramidal side effects and dyskinesias. A selective DA autoreceptor agonist which decreases synthesis and release of DA as well as the firing rate of DA neurons ${ }^{2}$ might decrease dopaminergic function sufficiently to have antipsychotic activity without causing extrapyramidal side effects or tardive dyskinesias resulting from direct blockage of postsynaptic DA receptors. In this way, a new class of neuroleptic drugs devoid of extrapyramidal side effects might emerge.

Pergolide (1), a semisynthetic ergot alkaloid, preferentially activates the DA autoreceptor at low doses. ${ }^{3}$ Martin and co-workers ${ }^{4}$ found that pergolide showed the highest selectivity for the autoreceptor seen for the series of compounds tested. Therefore, we were interested in synthesizing partial pergolide analogues in an effort to increase selectivity for the presynaptic versus postsynaptic D_{2} receptor.

A number of workers have synthesized a variety of partial ergoline compounds in order to determine the dopaminergic pharmacophore present in the ergoline skeleton. Originally, ${ }^{5}$ it was thought that the phenethylamine portion was responsible for DA activity (Chart I, structure A). However, Nichols ${ }^{6}$ noted that a comparison of the
(1) Creese, I.; Burt, D. R.; Snyder, S. H. Science 1976, 192, 481.
(2) Aghajanian, G. K.; Bunney, B. S. Arch. Pharmacol. 1977, 297, 1. Tepper, J. M.; Nakamura, S.; Young, S.; Groves, P. M. Brain Res. 1984, 309, 317.
(3) Fuller, R. W.; Clemens, J. A.; Kornfeld, E. C.; Snoddy, H. D.; Smalstig, E. B.; Bach, N. J. Life Sci. 1979, 24, 375. Fuller, R. W.; Clemens, J. A.; Hynes, M. D., III J. Clin. Psychopharmacol. 1982, 2, 371.
(4) Martin, G. E.; Williams, M.; Haubrich, D. R. J. Pharmacol. Exp. Ther. 1982, 223, 298.
(5) Cameron, N.; Chan, L. Y. Y.; Cameron, A. Mol. Pharmacol. 1979, 16, 729.
(6) Nichols, D. E. J. Theor. Biol. 1976, 59, 169.

1

2

3

4a $R=H$
$4 \mathrm{~b} \quad \mathrm{R}=\mathrm{CH}_{2} \mathrm{SMc}$

(.). $8 \mathrm{a} \quad \mathrm{R}=\mathrm{PT}$
$8 \mathbf{b} \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Ph}$ $8 \mathrm{c} \quad \mathrm{R}=\mathrm{CH}_{2} \mathrm{CH}_{2}$-2-thienyl $8 \mathrm{~d} R=\left(\mathrm{CH}_{2}\right)_{n} \mathrm{X}$
absolute configuration of the ergoline skeleton with that of the classical DA agonist, apomorphine (2), suggested that it was the rigid pyrroleethylamine moiety which was the DA pharmacophore (Chart I, structure B). Kornfeld ${ }^{7}$ had also come to this conclusion and tested this hypothesis by synthesizing a number of partial ergoline structures. The octahydropyrrolo- and pyrazolo[3,4-g]quinolines 3 and

[^4]
[^0]: ${ }^{\dagger}$ Department of Chemistry.
 ${ }^{\ddagger}$ Department of Biology.

[^1]: (6) Oikawa, Y.; Sugano, K.; Yonemitsu, O. J. Org. Chem. 1978, 43, 2087.
 (7) Wagenknecht, J. H.; Baizer, M. M.; Chruma, J. L. Synth. Commun. 1972, 2, 215.
 (8) (i) Jackson, R. F. W.; Raphael, R. A. Tetrahedron Lett. 1983, 24, 2117. (ii) Raphael, R. A. Personal communication.
 (9) Rasmussen, P. B.; Pedersen, U.; Thomsen, I.; Yde, B.; Lawesson, S. O. Bull. Soc. Chim. Fr. 1985, 62.

[^2]: (10) (i) Schofield, K.; Grimmett, M. R.; Keene, B. R. T. The Azoles; Cambridge University Press: Cambridge, 1976. (ii) Comprehensive Organic Chemistry, Part 4A; Potts, K. T., Ed.; Vol. 5, pp 817-819.
 (11) Butler, R. N. Adv. Heterocycl. Chem. 1977, 21, 323.

[^3]: (16) McCasland, G. E.; Tarbell, D. S. J. Am. Chem. Soc. 1946, 68, 2393.
 (17) Schaefer, F. C.; Peters, G. A. J. Org. Chem. 1961, 26, 412.

[^4]: (7) (a) Bach, N. J.; Kornfeld, E. C.; Jones, N. D.; Chaney, M. O.; Dorman, D. E.; Paschal, J. W.; Clemens, J. A.; Smalstig, E. B. J. Med. Chem. 1980, 23, 481. (b) Titus, R. D.; Kornfeld, E. C.; Jones, N. D.; Clemens, J. A.; Smalstig, E. B.; Fuller, R. W.; Hahn, R. A.; Hynes, M. D.; Mason, N. R.; Wong, D. T.; Foreman, M. M. J. Med. Chem. 1983, 26, 1112.

